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Sufficient conditions of asymptotic stability as well as of instability derived 
directly from coefficients of normal form are presented. 

The problem of stability of the trivial solution of the autonomous system of ordin- 
ary differential equations 

dx / dt E x* = X (x), X (0) = 0, x E I?” (0.U 

is considered. Here X (x) is a holomorphic vector function and matrix (ax / &~)__a 
has only pure imaginary eigenvalues -I_ h, (&s < 0; s = 1, 2, . . . , N) that satisfy the 

condition of the fourth order inner resonance 

$P, + - - * + &P, = 0, Pl+..-+PN=4 

where pl, . . ., pN are relatively prime nonnegative integers, 
This problem was analyzed in detail only for Hamiltonian systems [ 1,2 ] for which 

the necessary and sufficient conditions of stability were obtained. For systems of the 

general form the problem is considerably more complicated, and may not be solvable 
algebraically even’ in the simplest cases (*). However it is important in applications 
to have at least sufficient but constructive criteria of stability and instability. A 

criterion of instability was proposed in [3]. 

1. It is shown in [4] that using Liapunov’s normalizing transformation and polar 

coordinates rj, 8j (j = 1, 2, . . . , N) it is possible to reduce the input system 

(0.1) to the form 

-&r-i = fJ rpj “Qs(0) + r, kq,r, -1 . . . 
j=l r=1 

8.=i:p,[i].r~"-8sj~+~h.rr\)+ . . . 

s=1 j=l I'=1 

s-1,2, . . ..n.2<n\(4 

r'-- a- 2r, 5 aavrv + . . . , 

N 

I-&~’ = - i)C,r,-tra~JGyry+...; 
Y=l 2‘=1 

( 1.1) 

‘) Shnol’, E. E. and Khazin, L. G., The nonexistence of an algebraic criterion 

of asymptotic stability at resonance 1 : 3. Moscow, Preprint Inst. Matem. Akad.Nauk 

SSSR, No. 45, 197’7. 
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a=n+1,...,N 

0 = PIOl + ..I -I- Pn%, Qs (0) == a, cos6 + 6, sin 8, i = f-3 

where it is assumed that Pn+i = . . . = PN = 0, i.e. that only the part of eigen- 
values 3Li, . . . . A, out of the total number fV resonates, 6,j is the Kronecker 
delta, and the omitted terms are of a higher order of smalIness relative to ri, . . . , 

TN‘ 

When a, = 6, = 0 we have the case of nonresonance, which was basically con- 

sidered in [5,6]. If, however, it is assumed that all a,, = b,, = 0, the problem 
is solved as in the case of third order resonance [4]. 

The aim of this investigation is to cbtain sufficient conditions of asymptotic stabili- 
ty and instability in the general case, i. e. when both the terms of inner resonance 
(a, # 0, b, # 0) and terms of the identical resonance (usV + 0, b, =+ 0) are 

present. 
Let us consider matrix 

and the coK~~nding to it all possible pairs of vectors a = (a,, ag, a,,) and b = 

(bat bg, b,), a, 6, Y = 1, * - - 7 n, a + $ + y , and n > 2 . Let 

q3n 4m DC4 be cooariant components of the vector product a X b that are 
nonzero. The following lemma is then valid (an essentially similar statement appear- 

ed (without proof) in [5>. 
L e m m a. For the system of linear equations 

(1.2) 

to have strictly positive (negative) solution for ys, it is necessary and sufficient 
that there exists at least one pair of vectors a and b for which there is no change 
of sign in the array of numbers De,, DYa, and D,p, 

We shall prove the sufficiency by direct derivation of the indicated solution. It 

is evidently possible, without affecting the generality, to assume that, for instance, 

the pair of vectors a = (al, a,, a,) and b = (b,, b,, b3) satisfy the conditions of 

the lemma. Then from (1.2) we have 

Owing to the arbitrariness of y3 and ~j , they can be assumed positive. Sub- 

jecting these to inequalities 

(1.4) 
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we find that when the lemma is satisfied y1 > 0 and ys > 0 which proves the 
sufficiency. 

To prove the necessity we shall first show that when the two indicated vectors a 
and b are absent, the numbering of matrix C elements can be such that all deter- 
minants Dij (i = 2, . . ., n) are of the same sign. For this we transpose the columns 
of matrix C so as to have 

I),i >o, i = 2, . * .) I; If,j < 0, i = I + 1, . . *, n 

Owing to the nonfulfilment of conditions of the lemma for any pair ofvectors e 
and b , it is possible to verify the validity of inequalities Dlj < 0 for i = 1, . . ., 
l;.j=l+1,. ..,n. Transposition of the first and 2 -th columns of matrix C yields 

on the one hand fit2 < 0 and, on the other maintains the negativeness of all deter- 
minants ft{j (i= E+ 1, . . ., a). Carrying out a similar transposition the necessary 
number of times, we finally obtain Drj < 0 (i = 2, . . ., n). 

But, taking into account the property of determinants D,j proved above, the 

second of Eqs. (1.3) shows that whatever the value of r,>O(a=3,...,n) we 

always have ys < 0 , and consequently, system (1.2) has no strictly positive (negat- 
ive) solution,. 

2. Let us consider the Liapunov functionof the form 

2V = jj ysr, + jj r, 
.s=l a=n+1 

(2.1) 

where the constants ‘yS satisfy Eqs. (1.2). If the conditions of the lemma proved 
above are satisfied all quantities yS can be assumed positive, and n - 2 of them 
must satisfy the two inequalities (1.4). 

R e m a r k. For n = 3 no constraints are imposed on ys . For n = 2 the 
conditions of the lemma have no meaning, but, as can be readily seen, the necessary 
and sufficient conditions of existence of strictly positive (negative) solution of Eqs. 

(1.2) are of the form 

ar I a2 = -b, f b2 < 0 (2.2) 

hence yr = - ai I a,y, and, consequently, one of the constants can be an arbitrary 
positive quantity. 

Differentiating (2.1) on the strength of (1.1) and taking into account (1.2), we 
obtain 

(2.3) 

where the order of smallness of omitted terms is not lower than the third with respect 
to variables rr, . . . , rN which solve the problem of stability. 

Matrix M of quadratic form from which begins the expansion of (2.3) may be 

written in the form 
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where A, and A, are n >< II and (N - IL) X (N - n) square matrices, res - 
pectively, B is a rectangular matrix, and a prime denotes a’transposed matrix. 

On the basis of the above it possible to formulate the following theorem whose 
validity follows from Liapunov’s theorem on asymptotic stability [7]. 

Theorem 1. Let system (1.1) be such that matrix c satisfies the condition 
of lemma. Then, if it is possible to select the n - 2 (n # 2) positive constants 

from among yl, . . . , yn satisfying Eqs. (1.2) so that the quadratic form in (2.3) 
is negative definite, then the trivial solution of system (1.1) is asymptotically stable. 

R e m a r k. For n = 4 the indicated constants must also satisfy inequalities (1.4), 

and for II = 2 condition (2.2) must be satisfied. 
Using functions V of the form (2.1) it is possible to obtain also the sufficient con- 

ditions of instability. The latter can occur independently of whether the conditions of 
the lemma are satisfied or not. In particular the following theorem is valid. 

Theorem 2. The trivial solution of system (1.1) is unstable when: 

a) the condition of lemma is satisfied for matrix c and the constants yr, . . . , 
‘yn which satisfy Eqs. (1.2) can be selected so that the quadratic form in (2.3) is of 

constant sign ; 

(2.4) 

b) the condition of lemma is satisfied for matrix C and the above quadratic form 
can be made to be of fixed sign by [suitable] selection of n - 2 positive constants 
from the totality of yr, . . . , Yn that satisfy Eqs. (1.2) 

c) the condition of lemma is satisfied for matrix c and the above quadratic form 
can be made positive definite by suitable selection of n - 2 positive constants from 

the totality yi, . . . , yn that satisfy Eqs. (1.2). 
In each of the above cases function V of the form (1.2) satisfies the conditions of 

Liapunov’s theorem on instability [7]. Thus, as implied by the lemma, constants Yr, 

. . . 7 yn cannot in case a) be simultaneously positive and, consequently, V is 
of alternating sign. The same applies to V in case b), since when conditions of 

the lemma and inequalities (1.4) are satisfied, all yl, . . . , yn can be made neg- 

ative. 
Finally, in case c) function v and its derivative are positive definite. 

3. To elucidate the constructiveness of the obtained criterion we consider certain 
particular cases of system (1.1). 

Case 1. We set in (1.1) n = N = 2. Equations (1.1) may then define, 

for instance, the perturbed motion of a non-Hamiltonian mechanical system with two 
degrees of freedom. 

The conditions of strict positiveness (negativeness) of solution of system (1.2) are 
of the form (2.2), hence one of the constants y1 or ya can be an arbitrary positive 
quantity. If one succeeds in making matrix M (2.4) positive definite by the selection 
of that constant, function V of the form (2.1) satisfies then Liapunov’s theorem on 
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asymptotic stability. 
For yi > 0 and ~,a > 0 the necessary and sufficient conditions of negativeness 

of matrix iW in the cone rl > 0 and rs > 0 are of the form 

au<07 a,,<++ 2 - $ alla22 (3.1) 

and V and V’ are then of constant but different signs. Hence when (2.2) and (3.1) 
are satisfied, the trivial solution is asymptotically stable. 

If we set y1 > 0 (yz < 0) and reverse the inequality sign of the first inequality, 
then when (2.2) is satisfied V and v’ are negative definite and the trivial solution 

is unstable. It is also unstable for any sign of oix s if for - a,/~, = &lb, < 0 
either the second of inequaLities (3.1) or the in~ua~~ 

a12 > -$a 21- 2 
( 
- 2 @1%?2 

1 

‘it 

is satisfied, since in both cases the derivative v’ is positive or negative definite, while 
function V itself is of alternating sign because yrys < 0. 

An interesting pe~u~a~ty of the class of systems considered above (d~tin~tshed 
by condition (2.2)) is that in it an asymptotic stability is possible for as large as desir- 
ed values of coefficients at the resonant terms a, and 6, , This is implied by the 
second of inequalities (3.1) if we set in it 

C a s e 2. We now set in (1.1) ?Z = hr = 3, i. e. we consider a system with 
three degrees of freedom. We set the matrix IvI(2.4) 

&1%t YlQ2 -t YG21 y1a13+ Y3~31 

M= yla12 + y2azl 2Y2U22 yza23 i- y@32 

ylal3+ Y3a31 y2h3+ y3asz 2y3a88 

where, on the basis of (1.3) 

y1=+39 Ya= +&y8 

where ys is an arbitrary constant which can be assumed positive. If coefficients 

as and bs satisfy the conditions of the lemma, we have y1 > 0 and Y2 > 0. 

On the strength of the Sylvester criterion we obtain the following conditions for 

matrix &f to be negative definite: 

ori > 0, F = 4&s&&i%2 - ai2 > 0 

G z FlZss - +$ all632 -t 816283-2 &4262s< o 

61= D23%2 -I- D31a21, 62 = D23a13-k DIaasI 

(3.2) 
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We conclude on the basis of Theorem 1 that inequalities (3.1) together with cond- 
itions of the lemma represent sufficient conditions of asymptotic stability. The obtain- 
ed inequalities are obviously compatible, since coefficient a,, does not appear in 
any of the last inequalities in (3.2) and the third inequality contains a term with co- 

efficients that are absent in the second inequality, It is, thus, possible to obtain for 
a sixth order system the conditions of asymptotic stability without having to select a 
suitable value for the arbitrary constant ys. 

Reversal of the signs of the first and last of inequalities (3.2) results, in virtue of 
Theorem 2, in an unstable trivial solution of system (1.1) (case c 1. It is evident 
that the trivial solution is also unstable (independently of whether conditions of the 
lemma are satisfied or not), if only the inequalities 

F > 0, a,& < 0 

are satisfied, since then cases a) and b) of Theorem 2 are valid. 
Note that conditions (3,Z) may be, generally speaking, widened, since it is suffici- 

ent to specify that v’ must be of definite sign only in the positive cone rs > 0 
(s= 1,2, . . *, n). However the analytic representation in the case of n > 3 

is a very difficult problem which reduces to the question of compatibility of the system 

of inequalities [8J. 
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